
TDA Progress Report 42-95

I .

N89-20341
July-September 1988

A Long Constraint Length VLSl Viterbi Decoder for the DSN
J. Statman, G. Zimmerman, F. Pollara, and 0. Collins

Communications Systems Research Section

A new Viterbi decoder, capable of decoding convolutional codes with constraint
lengths up to 15, is under development for the DSN. The objective is to complete a
prototype o f this decoder by late 1990, and demonstrate its performance using the (1.5,
1/41 encoder in Galileo. The decoder is expected to provide I dB to 2 dB improvement in
bit SNR, compared to the present (7,112) code and existing Maximum-Likelihood Con-
volutional Decoder (MCD). The new decoder will be fully programmable for any code up
to constraint length 15, and code rate 112 to 116. This article describes the decoder
architecture and top-level design.

1. Introduction
The DSN uses concatentated codes to reduce the Bit Error

Rate (BER) on the telemetry channel from deep space probes
to the DSN complexes. Standard coding, as used for the Voy-
ager mission, consists of an outer (255,223) Reed Solomon
(RS) code and an inner convolutional code with constraint
length K = 7, and code rate 1/2. Decoding is accomplished by
a Maximum-Likelihood Convolutional Decoder (MCD), fol-
lowed by an RS decoder. A typical telemetry chain is shown in
Fig. 1. Performance of this coding scheme is well understood
D l s21 .

Recently [3] , new convolutional codes have been dis-
covered that provide a “2-dB coding gain” over existing codes.
The highest gain, 2.1 1 dB, is achieved by using a (15,1/6) con-
volutional code, concatenated with a (1023,959) RS code.
Using (15,1/6) convolutional codes with a (255,223) RS code
results in an estimated coding gain of 1.8 dB. This gain can be
realized by building a new Viterbi decoder for the inner code,
and using the existing RS decoder. Hence, employing the
newly discovered convolutional codes can result in relatively
inexpensive improvement in DSN telemetry performance.

To demonstrate the new codes, an encoder for a (15,1/4)
convolutional code is being added to the Galileo spacecraft.
A rate 1/4 code is used instead of a rate 1/6 code, because of
the limited bandwidth available on the Galileo modulator. This
encoder, shown in Fig. 2, requires only a small number of
parts (20 integrated circuits and 60 discrete components) and
thus has a minimal impact on spacecraft complexity. A proto-
type decoder is being developed, capable of decoding Galileo
data, but also of accepting other codes such as DSN standard
codes and (15,1/6) convolutional codes. Figure 3 shows the
BER versus bit SNR, for various coding schemes, with a
predicted coding gain for the Galileo experiment of 1.5 dB.

The complexity of a Viterbi decoder depends on three key
parameters: constraint length (i.e., degree of the generating
polynomials), code rate (i.e., reciprocal of the number of en-
coded symbols transmitted for each information bit), and infor-
mation data rate. The major complexity driver is constraint
length, since the amount of hardware is roughly proportional
to the number of states, which is 2(K-’), where K is the con-
straint length. Hence a decoder for K = 15 is approximately
256 times more complex than a decoder for K = 7. Such a

134

complex decoder can be built with current VLSI technology
within reasonable size limitations.

This paper describes the prototype decoder. Section 2 out-
lines system requirements, and Section 3 describes the top-
level design. Section 4 describes in detail the architecture
of the processor assembly, the unit performing the actual
decoding.

II. Decoder Requirements
Requirements for the decoder can be separated into three

categories:

(1) Performance. The decoder will process convolutionally
coded data with constraint length up to 15 (program-
mable) and code rate 1/2 to 1/6 (programmable).Data
rate must meet Galileo requirement (1 34.4 Kbit/sec),
with a goal of 1 Mbit/sec. The decoder will utilize a
synchronization pattern, if it is present in the uncoded
data stream, to support node synch. In addition, an
external node synch input will be available.

(2) Interfaces. The decoder will provide DSN interfaces,
for testing in CTA 21 and for integration into DSN
complexes. At a minimum these include symbol input
from the Symbol Synchronizer Assembly (SSA) or the
Base-Band Assembly (BBA), decoded information bits
to the Frame Synchronization Subsystem (FSS), and
interfaces to station monitor and control.

(3) Testability. The decoder will include testing capability
for both stand-alone tests and DSN compatibility tests.
In the stand-alone test, the decoder will generate a
pre-programmed information bit sequence, encode it
according to the desired convolutional code, add a pro-
grammable amount of white Gaussian noise to the
symbols, pass the noisy symbols to the decoder proper
(processor assembly), compare the decoded bits to
the original sequence, and compute BER, in real time.
The decoder will also provide GO or NO GO indication
to the operator. For DSN compatibility testing the de-
coder will receive a symbol stream, and an un-encoded
bit stream, decode the symbols, and compute BER.

Additional requirements concerning operating environment,
size, power consumption, reliability, fault testing, and main-
tainability exist, but are not discussed here.’

J . Statman, “Draft Task Plan for Large Constraint Length VLSI Viterbi
Decoder,” JPL IOM 331-87.5-241 (internal document), December 28,
1987.

111. Top-level Design
A functional block diagram of the decoder is shown in

Fig. 4. The following is an overview of these blocks:

(1) Processor Assembly. T h s is the “heart” of the decoder.
It consists of 256 identical VLSI chips that perform
the maximum-likelihood decoding of the incoming
symbol sequence. In addition, this assembly includes
path memory, metric normalization circuitry, and the
applicable computer, timing, and control interfaces.

(2) Simulator Assembly. The simulator assembly generates
a noisy symbol sequence in three steps. First, an infor-
mation sequence is generated. Next, this sequence is
encoded using the appropriate convolutional encoder.
Finally, a measured amount of noise is added. In addi-
tion, the simulator assembly sends the uncoded infor-
mation sequence to the comparator assembly, to
enable performance evaluation.

(3) Comparator Assembly. This assembly receives “true”
information bits from either the simulator assembly
or from an external input, and decoded bits from the
processor assembly. It aligns the sequences and collects
BER data.

(4) Node Synch Assembly. The node synch assembly
derives node synch either from the rate of metric
increase, from an embedded synch pattern, or from an
external source.

(5) Erasure Signal Generator. This is an option under con-
sideration. It is based on an algorithm [4] that com-
pares the incoming symbols to an encoded version of
the decoded information bits, to determine probable
burst-error locations.

(6) SSA Interface. This module converts the signal coming
from the SSA to signals compatible with the decoder.
The two key operations are adjustment of voltage
levels and removal of additional sign inversions added
by some encoders.

(7) FSS Interface. This module sends the decoded bits to
the FSS, similar to the existing MCD output.

(8) Other DSN Interfaces. More DSN interfaces are under
definition. Options are interface to the Telemetry
Processor Assembly (TPA) and interfaces to future
DSN data network via Small Computer Standard Inter-
face (SCSI) bus for data transfer, and General Purpose
Instrumentation bus (GPIB) for monitor and control.

135

(9) Computer-Controller-Timing. The computer-controller-
timing coordinates the modules described above by
providing command, control, and monitor operations
during initialization and decoding. In addition, it gen-
erates all the required timing signals and allows for
extensive stand-alone testing.

The prototype decoder packaging approach is to provide
for easy transfer from prototype packaging to a DSN-ready
system. Standard DSN packaging techniques are used where
possible. The baseline package is in two drawers, mountable
in a 19-inch rack. The first drawer is based on a MULTIBUS I
card cage and includes all the assemblies and external inter-
faces, except for the processor assembly. The second drawer
includes the processor assembly.

IV. Processor Assembly Architecture
The architecture presented here is for a particular imple-

mentation of the Viterbi decoder. We start by reviewing sev-
eral basic definitions and algorithms that are used elsewhere in
this article. It is not intended as a Viterbi decoder tutorial, and
the interested reader may read references [l] , [2] , [S I , [6]
for further information.

The Viterbi decoder tries to find the best possible match
between a stream of received symbols and a path through a
state trellis. The processing is sequential, Le., using the set of
symbols corresponding to a single information bit, the decoder
progresses from one time-slice through the trellis to the next,
while updating its decision on the most likely path and the
resulting decoded bits. For a code with constraint length K ,
the number of states is 2 K - 1 , so in the K = 15 decoder there
are 16384 states.

We assume here that the code rate is l ln. This implies that
each state is connected to two preceding states and to two suc-
ceeding states, depending on whether the preceding and suc-
ceeding information bits are 0 or 1. In fact, it is convenient to
organize the states in butterflies (so called because the graph
of associated arithmetic resembles a butterfly). Each butterfly
contains two states, and has inputs from two other butterflies
and outputs to two other butterflies. For K = 15, the 16384
states are organized in 81 92 butterflies.

The data exchanged between the butterflies are accumu-
lated metrics. These metrics represent the probability of trellis
paths, i.e., the lower the accumulated metric, the more likely
is the path. There is one accumulated metric per state, or two
per butterfly. Accumulated metrics are computed inside the
butterfly. For each set of symbols corresponding to an infor-
mation bit, the butterflies add the existing accumulated met-

ric to the metric associated with the new symbols (so called
“branch metric”), resulting in new accumulated metrics. As
time passes, accumulated metrics grow, so periodically they
are reduced down, or normalized.

A. Basic Trade-offs

Several implementation choices were made and are docu-
mented below. First, the 8192 butterflies can be implemented
using serial or parallel architectures, or with a hybrid serial-
parallel approach. In a serial architecture, a single physical
butterfly processor performs all 8 192 butterflies, sequentially.
In a parallel architecture, 8192 physical butterflies are used.
In a hybrid approach, n physical butterflies are used, each
sequencing through 8192/n butterflies. The fully parallel
architecture was chosen.

Next, a choice of arithmetic method is made. The arith
metic operations include addition, subtraction, and compari-
sons between metrics. The decoder uses integer arithmetic and
performs bit-serial arithmetic, or bit-by-bit operations. In this
approach, the metrics (represented by 8- to 18-bit numbers)
are sent serially, on a single wire, LSB to MSB. A separate
TDA Progress Report article is under preparation, describing
the bit-serial versus parallel arithmetic trade-offs.

Next, the method for decoder graph partitioning is selected.
Butterfly interconnection can be represented by a graph with
8192 nodes, where each node corresponds to a butterfly.
Each node has inputs from two other nodes and outputs to
two other nodes. The partitioning selected will be described in
detail in a future progress report. It is a two-level partitioning
of the graph, where the fust-level subgraphs correspond to
printed circuit boards, while secondlevel subgraphs correspond
to VLSI chips. Key features of the partitioning are (a) the
graph is split among 16 identical boards, each with 16 identical
VLSI chips, leading to easy implementation, (b) any Viterbi
decoder of constraint length K can be built by wiring together
2(K-7) of these chips or 2(K-11) of these boards, and (c) the
number of wires between boards and chips is relatively small.

B. Processor Assembly Elements

major functions:
The processor assembly, shown in Fig. 5, consists of six

(1) Symbol Conversion. The symbols arriving into the
processor assembly are 8-bit 2’s complement quanti-
ties, arriving at the rate of one symbol per symbol
clock. The symbol conversion module buffers the sym-
bols into blocks that correspond to information bits
(using the node synch signal), converts the symbols
into sign-magnitude values, and rearranges the sym-
bols for bit-serial transmission to the butterflies. It also

136

computes the sum of the magnitudes of the six sym-
bols and transmits it to butterflies, bit-serially, LSB
first.

Butterflies. The butterflies are the core of the decoder.
As shown in Fig. 6 , each butterfly consists of two main
blocks: an Add-Compare-Select (ACS) unit and a Met-
ric Computer. The ACS uses four adders to add branch
metrics to accumulated metrics, then compares the
sums to select two of them for further transmission.
The metric computer uses a set of adders to compute a
weighted sum of the received symbols. Both the ACS
and the metric computer are mathematically specified
below. The complete decoder for K = 15 has 8192
butterflies, 32 butterflies per VLSI chip.

Metric Exchange. The metric exchange function is per-
formed by the interconnections between butterflies.
Some of the metrics are exchanged inside the VLSI
chip, while others are sent via wires between chips and
in a backplane. All transmitted metrics must be kept
aligned, i.e., the i th bit of transmitted metric is present
on all metric exchange wires at the same clock period,
regardless of the form of this connection.

Traceback Memory. After each butterfly completes the
ACS operation it sends two bits to the traceback mem-
ory. These two bits per butterfly (computed once per
information bit) represent the results of the two ACS
select operations. The traceback memory can be viewed
as a matrix where one dimension is the number of
states, 16384, and the other dimension corresponds to
time, and has 3*7*K entries. For K = 15, the memory
has at least 16384 *3*7* 15 bits, or approximately
640 Kbytes.

Traceback Processor. The traceback processor reads
and writes the traceback memory to produce decoded
bits [4] .’
Normalization Processor. The normalization processor
monitors several accumulated metrics. When any of
these metrics exceeds a computer-selected threshold,
a normalization command is issued to the butterflies,
to be executed during the next information bit time.

1. Add-Compare-Select. A diagram of an ACS is shown in
Fig. 7. The accumulated metrics (16-bits) from neighboring
states io and i l , which were previously computed in some
other ACS unit, are added bit-serially to the branch metrics
bo,, b o , , b,,, and b,, , provided by the metric computer unit.
The operation produces the sums:

s l l = mi , i- b l ,

These sums are shifted into four shift registers and the
smaller sum of each pair is selected by the comparators, as
follows:

if (soo < slo), mi, = soo and bitO = 0,

otherwise m,, = s,, and bitO = 1

if(sol < s,,), mil = sol and b i t l = 0,

otherwise mi, = sI1 and b i t l = 1

Here, mi, and mil are the output accumulated metrics, and
bit 0 and bit 1 are the results of the decisions, sent to the trace-
back memory.

2. Branch Metric Computer. The branch metrics are com-
puted in the metric computer (Fig. 8) from the six received
symbols, r,, . . . r 5 . The implementation here is slightly differ-
ent from that found in the literature, resulting in reduction of
the dynamic range of the branch metrics by a factor of 2 [4] .
Let ri be represented as sign and magnitude binary numbers, as
follows:

r . =

C. Butterfly Mathematical Representation and
where si are the sign bits. Let (eo, e, , . . . , es) be the label
assigned to the butterfly at initialization. This label is the out-

Implementation

The following paragraphs describe the equations of the ACS put of an encoder making one of the state transitions of the
butterfly. Because the generator polynomials of the codes con-
sidered have leading and trailing ones, each butterfly has only
two possible branch metrics, and they sum to a constant (for a

and the metric computer unit.

fixed set of symbols). Let
’F. Pollara and H. Shao, “Memory Management in Traceback Viterbi
Decoders,” JPL IOM 331-87.2-242 (internal document), February 12,
1987. ci = ei @ si i = 0, . . . , 5

137

I then

boo = 7.
i € A

where A is the set of all i’s such that ci = 1, and <. are the mag-
nitudes of the ri’s. Also, b , , = x - boo, where x is

5 x = c < .
i= 0

i Finally, for codes with a leading and trailing one in the gen-
erator polynomials, b, , = bo, and bo, = blo . This condition is

met for our codes with K = 15. If K < 15, we have b,, = b l o
and bo, = boo.

V. Conclusions
A new DSN Viterbi decoder is under development that

benefits from two recent Advanced Systems developments:
the successful search for long constraint length codes which
yield a “2-dB coding gain,” and the VLSI expertise in the
Communications Systems Research Section. The top-level
design, mathematical characterization, and functional speci-
fications have been completed. The decoder is expected to be
ready for testing using a Galileo encoder by late 1990.

References

[l] J . H. Yuen, Deep Space Communications Systems Engineering, New York: Plenum
Press, 1983.

[2] R. L. Miller, L. J. Deutsch, and S. A. Butman, On the Error Statistics of Viterbi
Decoding and the Performance of Concatenated Codes, JPL Publication 8 1-58,
Jet Propulsion Laboratory, Pasadena, California, September 198 1.

[3] J. H. Yuen and Q. D. Vo, “In Search of a 2-dB Coding Gain,” TDA ProgressReport
42-83, vol. July-September 1985, Jet Propulsion Laboratory, Pasadena, California,
pp. 26-33, November 15, 1985.

[4] 0. Collins, Ph.D. Thesis, California Institute of Technology, in preparation.

[5] G . C. Clark and J . B. Cain, Error-Correcting Coding for Digital Communications, New

[6] R. J . McEliece, The Theory of Information and Coding, Massachusetts: Cambridge

York: Plenum Press, 1981.

Press, 1977.

138

INPUT
DATA
BITS

h CARRIER H MODULATION
SUBCARRIER
MOD U LATl ON

CONVOLUTIONAL
ENCODER

DATA 4 RS
SOURCE ENCODER

RECEIVED VlTERBl SSA SDA RECEIVER
TELEMETRY- - DECODER - (SYMBOL - (SUBCARRIER - (CARRIER
DATA (MCDI SYNCH) SYNCH) SYNCH)

RS
DECODER

Fig. 1. Typical DSN telemetry chain.

OUTPUT
SYMBOL
1

OUTPUT
SYMBOL
2

OUTPUT
SY MBD L
3

OUTPUT
SYMBOL
4

Fig. 2. A (15,Y') convolutional encoder for Galih.

139

10-1

10-2

l a
m 10-3 w

COMPUTER/CONTROLLER/TlMlNG

a
g

10-4 -
m

~E~AYuG- -I ' SIGNAL I ! GENERATOR I

10-5

10-6

EXTERNAL MUX 5 C. NODESYNC 5
NODE SYNCH-

SIGNAL-TO-NOISE RATIO (PER INFORMATION BIT). dB

I -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

* * EXTRAPOLATION BEYOND RANGE OF INTENDED USE

REQUIRED BER
(UNCOMPRESSED DATA)

THEORETICAL Y

LIMIT EXPERIMENTAL CURRENT
(15, 1/41 CODE
FOR GALILEO (VOYAGER,

(7, 1/21 CODE

GALILEO)

r - - - - i

L-----J
~ ~ ! ~ ~ F ~ ~ s

Fig. 3. Code performance.

SYNTHKLOCKS FRONT PANEL CRT

1 ! f

PROCESSOR ASSEMBLY 8

SIMULATOR ASSEMBLY 5 COMPARATOR 5

SSA/BBA

5 COMPUTER
CONTROLLED NOISE

Fig. 4. Decoder functional block diagram.

140

NODE SYNCH SYMBOLS u
NORMALIZATIONS 5

SYMBOL
CONVERSION §

0 ~ ~ ~ ~ ~ T T E R F L I E S METRIC EXCHANGE

(3*7k*16384 BITS) §

PROCESSOR §

§COMPUTER
CONTROLLED

Fig.

DECODED BITS

5. Processor assembly block diagram.

IN METRIC 0 OUT METRIC 0

ADDICOMPAR EISE LECT

I I

CONTROLISTATUS

SYMBOLS
METRIC COMPUTER

1 1
MEMORY

Fig. 6. Block diagram of a single butterfly.

141

mi0

- - SHIFTREGISTER - SERIAL , so0 -
ADDER

- -

SHIFT REGISTER J)DER
L

b l 1

1
mj0

SERIAL COMPARATOR c 2 T 0 1 -
bit0

-

I t *

Fig. 7. Add-Compare-Select unit.

-

~

ADDER

X
ADDER

Fig. 8. Branch metric computer.

142

